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Abstract

Conditioning on variables affected by treatment can induce post-treatment bias when estimating causal
effects. Although this suggests that researchers should measure potential moderators before administering
the treatment in an experiment, doing somay also bias causal effect estimation if the covariatemeasurement
primes respondents to react differently to the treatment.This paper formally analyzes this trade-off between
post-treatment and priming biases in three experimental designs that vary whenmoderators are measured:
pre-treatment, post-treatment, or a randomized choice between the two. We derive nonparametric bounds
for interactions between the treatment and the moderator under each design and show how to use
substantive assumptions to narrow these bounds. These bounds allow researchers to assess the sensitivity
of their empirical findings to priming and post-treatment bias. We then apply the proposed methodology
to a survey experiment on electoral messaging.
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1. Introduction

Ascertaining heterogeneous treatment effects is an integral part of many survey experiments.
Researchers are often interested in how treatment effects vary across respondents with different
characteristics. For example, we may be interested both in how implicit versus explicit racial cues
affect support for a particular policy but also in how those effects differ by levels of racial resentment
(Valentino, Hutchings, and White 2002). Or we may want to know whether the effect of land-based
electoral appeals might depend on the voters’ sense of land security (Horowitz and Klaus 2020). These
questions of effect heterogeneity allow researchers to explore potential causal mechanisms and design
more targeted and effective future treatments.

To examine such treatment effect heterogeneity, we must measure the relevant covariates, such as
racial resentment or land security in the aforementioned examples, at some point during the survey
experiment.The question ofwhenwemeasure thesemoderators, however, is a source ofmethodological
debate. On the one hand, a long tradition in political science has recognized the potential priming bias
of a pre-test design, where covariates are measured prior to treatment (e.g., Klar 2013; Klar, Leeper,
and Robison 2020; Morris, Carranza, and Fox 2008; Schiff, Montagnes, and Peskowitz 2022; Transue
2007). For example, asking a respondent about their party identification might lead them to evaluate
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the treatment in a more partisan or political light, resulting in biased causal effect estimates. Several
studies have documented priming effects from a range of different covariates (see Klar et al. 2020, for a
review). Some find that certain priming effects can last for weeks (Chong and Druckman 2010).

On the other hand, the practice of measuring moderators after treatment, what we call a post-test
design, has come under scrutiny due to the possibility for post-treatment bias (Acharya, Blackwell, and
Sen 2016; Montgomery, Nyhan, and Torres 2018; Rosenbaum 1984). In particular, if covariates are
affected by the treatment, then conditioning on those covariates—as required when assessing effect
heterogeneity—can bias the estimation of conditional average treatment effect and any interactions
that compare such effects. In our empirical application, the key moderating variable of land insecurity
is a subjective, perceived measure and thus potentially affected by the framing of a political appeal
around land rights. Though treatment is unlikely to affect measurements of many moderators like
basic demographics, researchers investigating manipulable moderators face a dilemma about when to
measure these covariates when designing an experiment.

In this paper, we apply the nonparametric identification and bounding approach of Manski (1995)
and Balke and Pearl (1997) to formally analyze the trade-off between priming and post-treatment biases
under different experimental designs, and we propose principled ways to analyze data (see Imai and
Yamamoto 2010, for a similar analysis of measurement error).

We begin by deriving nonparametric bounds to show that neither the pre-test nor post-test design
provides much information about conditional average treatment effects or interactions without addi-
tional assumptions. Next, we show how three potentially plausible assumptions can narrow the bounds.
The first is priming monotoncity, which assumes that whether the moderator is measured pre- or post-
treatment only affects the outcome in one direction. The second is moderator monotonicity, which
assumes that measuring the covariates after treatment can move the value of that moderator only in
one direction. The third assumption is stable moderator under control, whereby the covariate under the
control condition cannot be affected by the timing of treatment. None of these assumptions can point
identify the interaction between the treatment and a moderator, but they can substantially narrow the
bounds and sometimes be informative about the sign of such an interaction.

To further sharpen our inference, we generalize the two standard experimental designs and consider
a randomized placement design, where the experimenter randomly assigns respondents to either the
pre-test or post-test design. We demonstrate how to estimate nonparametric bounds in this context
and how to incorporate assumptions that connect the pre-test and post-test arms to further narrow the
bounds. In Supplementary Material, we also develop a parametric Bayesian approach to incorporate
pre-treatment covariates in the analysis to sharpen our inferences and quantify estimation uncertainty.

We also derive sensitivity analysis procedures for all three designs. In these analyses, we vary the
proportion of respondents whose outcomes or moderators are affected by when the moderator is
measured and assess how the bounds change as a function of this sensitivity parameter. This procedure
allows researchers and readers to gauge the credibility of an estimated interaction in light of a more
nuanced set of assumptions, rather than the blunt instruments of the monotonicity and stability.

Several recent studies have empirically explored the trade-off between priming and post-treatment
bias. Albertson and Jessee (2023) find that the effect of moderator placement has little effect on the
estimated interaction in a question-wording experiment. Furthermore, they find no evidence for an
average effect of treatment on the moderator, potentially reducing concerns about post-treatment bias.
Sheagley and Clifford (2025) compared several experiments when the moderators were measured just
prior to treatment or in a prior survey wave. The authors found that estimated effects and interactions
were similar across these conditions and concluded that priming bias may not be a widespread concern
for experimental studies in political science.

Both of these papers present compelling evidence for the specific experiments conducted in their
empirical assessments, but as Sheagley and Clifford (2025) warn us, “we should be cautious in gener-
alizing [these] findings to the wide variety of studies run by political scientists.” Our approach, on the
other hand, provides a general methodological toolkit that can be applied to any experimental design
and allows researchers to include substantive assumptions to tailor the framework to their applications.
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The rest of the paper proceeds as follows. We first introduce a motivating empirical example of how
land insecurity moderates the effectiveness of land-based appeals by politicians from Horowitz and
Klaus (2020).We next describe the notation and basic assumptions of the pre-test and post-test designs.
We then derive the sharp nonparametric bounds and sensitivity analyses for the pre-test, post-test, and
randomized placement designs. Next, we apply the proposedmethods to the empirical example. Finally,
we conclude by suggesting directions for future research.

2. Motivating Example

We illustrate the trade-off between the pre- and post-treatment measurement of a moderator using a
survey experiment conducted by Horowitz and Klaus (2020).This study investigates the effectiveness of
land-based appeals to increase a politician’s electoral support in Kenya’s RiftValley. It focuses on a region
where contemporary ethnic divisions are, in part, a function of long-standing conflicts over land. The
authors conduct a survey experiment that tests the effect of candidate appeals about land ownership and
related ethnic grievances on electoral support. Their finding shows little overall effect of such appeals
on electoral support. The study also examines heterogeneity by land insecurity, polling respondents on
how precarious they feel their ownershipmay be over said land.The authors argue that respondents who
express greater land insecurity would be more likely to see material gain from electing a candidate who
makes land ownership appeals.They find that land insecurity is positively associated with the treatment
effect.

In our analysis, we focus on two randomly assigned conditions: a control condition in which
participants heard a generic campaign speech with no direct reference to the land issue, and a treatment
condition that additionally referenced the land issue.1 The outcome is the participant’s reported
likelihood of supporting the candidate, which we dichotomize (likely to support the candidate versus
not) to illustrate our proposed methods.

One of the main hypotheses tested by Horowitz and Klaus (2020) is whether individuals who are
personally experiencing land insecurity aremore responsive to land-based appeals by politicians.While
the evidence from the full sample is inconclusive, among respondents belonging to the “insider” ethnic
group (Kalenjins), there is a positive and statistically significant interaction between the treatment
condition and a dummy variable for land insecurity, in line with the authors’ expectations.

Both types of bias could be of concern in this context, as land insecurity is measured by asking
respondents to rate the security of their land rights. Asking this question before treatment may raise
the salience of the land issue and thus attenuate any treatment effect of hearing a land-based appeal
by a politician, a form of priming bias. Conversely, if the experimenter asks respondents about land
security after treatment, then their responses may be affected by the content of the speech, yielding
post-treatment bias.

To address these concerns, Horowitz and Klaus (2020) use (what we call) the randomized placement
design, in which questions relating to the respondent’s land rights were randomly assigned to occur
before or after the treatment. Figure 1 shows the “naïve” estimates of the treatment-moderator interac-
tion, which are all positive and substantively large, implying that the effect of a land-based appeal on
electoral support is 25–50 percentage points larger for land-insecure respondents compared land-secure
respondents. However, these estimates only reach conventional levels of statistical significance with the
increased statistical power of the combined pre/post sample.

What can we learn about the true interaction from these estimates? We show in the following
sections that the observed data often tells us very little about interactions without strong assumption. In
Section 6, we return to this empirical example to illustrate how researchers can assess the possible impact
of priming bias and post-treatment bias on their substantive findings using our proposed methods.

1To preserve statistical power, we focus on a treatment group that combines two conditions: one stating the land issues is
their top priority and one that additionally reference an ethnic grievance.
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Figure 1. Estimates of treatment-moderator interaction using pre-test, post-test, and combined data fromHorowitz and Klaus (2020),

with andwithout covariates (age, gender, education, and closeness toownethnic group). Error bars indicate 95%confidence intervals.

3. Experimental Designs and Causal Quantities of Interest

We now lay out the formal notation of our setting and describe the causal quantities of interest. Let
Ti represent the binary treatment variable for unit i ∈ {1, . . . ,n}, indicating a certain experimental
manipulation received by the unit.We useYi to denote a binary outcome of interest, andMi to represent
an observed binary moderator of interest.2 Our goal is to develop a methodology that can be used to
understand how the average treatment effect of Ti on Yi varies as a function ofMi.

In this paper, we consider three experimental designs for this goal: the pre-test design, the post-test
design, and the randomized placement design.These three designs differ in the timing of measurement
for the potential moderators. In the pre-test design, the experimenter measures the moderator, Mi,
before treatment assignment, ensuring that these measurements are unaffected by treatment. In the
post-test design, the experimenter measures moderators after treatment assignment. Let Zi be an
indicator for measuringMi before (Zi = 0) or after treatment (Zi = 1).

We will analyze these experimental designs using the potential outcomes framework (e.g., Holland
1986). Let Yi(t,z) represent the potential outcome with respect to the treatment status t and the timing
of covariate measurement, z. In our empirical application, for example, Yi(1,1) is whether respondent i
would support the hypothetical candidate if they were given the speech with referencing the land issue
(that is, treatment, t = 1) and wemeasured the land security moderator after treatment (z = 1).Wemake
the consistency assumption for the potential outcomes, such that Yi = Yi(Ti,Zi).

Our goal is to estimate treatment effects on the outcome free of priming bias, which requires us to
measure moderators after treatment. To this end, we define the “true” potential outcomes of interest as
Y∗i (t) ≡Yi(t,1) and let Yi(t) ≡ Yi(t,0) to be a possibly mismeasured proxy observed under the pre-test
design. Priming bias can occur when the pre-test and post-test measurements of the outcome differ,
Yi(t) ≠ Y∗i (t).3

Similarly, the measures of the moderator, self-reported land security, can be affected by the when
it is measured and the land grievance framing treatment. Let Mi(t,z) be the potential value of the

2We focus on the binary setting to ease exposition, though many of the methods could be extended to more general cases.
3While we follow the literature and refer to the difference between the two potential outcomes, i.e., Yi(t) and Y∗i (t), as

priming “bias,” some researchers may be interested in Yi(t) even though this alternative outcome may be affected by the
measurement of moderator.
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moderator that would be observed for unit i when the treatment is set to t and the variable is measured
in design z. Under the pre-test design, the treatment cannot affect the moderator, so we refer to
Mi(0,0) = Mi(1,0) ≡ M∗i as the “true” moderator for unit i. On the other hand, under the post-test
design, we let Mi(t) ≡Mi(t,1) to be potentially mismeasured proxy for that true moderator. Under
those designs, the treatment can affect respondents’ moderator, so thatMi(0) ≠Mi(1), which can lead
to post-treatment bias.

We can explore heterogeneous treatment effects by estimating the following quantities of interest,

τ(m) ≡E(Y∗i (1)−Y∗i (0) ∣M∗i =m), (1)
δ ≡ τ(1)−τ(0), (2)

where m ∈ {0,1}. The first quantity characterizes the post-test conditional average treatment effect
(CATE) as a function of the pre-test value of themoderator.ThisCATE is the effect of land-based appeals
on support for a politician (when unprimed) conditional on a level of true land insecurity. The second
quantity of interest compares the CATE between two subpopulations with different levels of the pre-
test moderator, which is often called an interaction effect. These two quantities of interest formalize the
dilemma about the choice of pre-test versus post-test experimental designs. Identifying τ(m) requires
observing the true potential outcomes of interest (Y∗i (t)) and true moderator (M∗i ) for the same unit,
but this can never occur because the former requires Zi = 1 and the latter requires Zi = 0.

While the pre-test design allows us to observe the true moderator, it may suffer from priming bias
because asking questions about the moderator might change the causal effect of the treatment by cueing
respondents.Thus, under the pre-test design, neither τ(m) nor δ nor even the ATE,E(Y∗i (1)−Y∗i (0)),
is identified. In contrast, under the post-test design, the ATE can be estimated without bias, and yet this
design may result in post-test bias for τ(m) and δ when the treatment affects the moderator.

4. Identification Analysis under the Three Experimental Designs

We now show what we can learn from each of the three possible experimental designs. Unfortunately,
our analysis demonstrates that none of the three designs are informative about the sign of the interaction
effectwithout further assumptions. For each design, however, we derive sharp bounds for the interaction
effect and show how to narrow these bounds with additional substantive assumptions. We also develop
a sensitivity analysis procedure that allows researchers to vary the strengths of such assumptions and
assess their implications.

4.1. Pre-test Design
We first investigate the identifying power of the pre-test design, where we observe (Yi,Mi,Ti) among
the units for whom Zi = 0. We begin by formalizing the randomization of treatment in this setting.

Assumption 1 (Pre-test Randomization).

{Yi(t,z),Mi(t,1)} ⊥⊥ Ti ∣M∗i =m,Zi = 0, (3)

for t = 0,1, m ∈ {0,1}.
Theassumption allows for the use of stratified randomization based on the pre-treatmentmoderator.

It is straightforward to show that this assumption also holds even when randomization is done without
conditioning on the pre-treatment moderator.

By computing the difference in the average observed outcomes between different treatment groups,
researchers can identify the following quantity,

τpre(m) ≡ E(Yi ∣ Ti = 1,Mi =m,Zi = 0)−E(Yi ∣ Ti = 0,Mi =m,Zi = 0)
= E(Yi(1)−Yi(0) ∣M∗i =m), (4)
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where the equality follows from Assumption 1 and the consistency assumption. Unfortunately,
equation (4) does not generally equal the true (i.e., unprimed) CATE, τ(m). The key problem is that
the pre-test design gives us information about the correct values of the moderator M∗i , but provides
no information about the outcomes we want to investigate, Y∗i (t). In particular, the conditional
distribution of Yi(t) givenM∗i =mmay differ from that of Y∗i (t) givenM∗i =m, since asking questions
about the moderator before measuring outcome may influence subsequent responses. Thus, τpre(m)
represents the CATE of the land grievance treatment on the primed support for the candidate. Similarly,
δ is not generally equal to the unprimed interaction effect, δpre ≡ τpre(1)−τpre(0).

With no restrictions on the priming bias, we cannot rule out extreme possibilities, such as all
respondents changing their values of Yi in response to the priming. This could occur if asking about
land security caused all supporters to oppose the hypothetical candidate and vice versa. While perhaps
unlikely, this scenario is possible under the randomization assumption alone. Thus, the nonparametric
sharp (i.e., shortest possible) bounds under the pre-test design remain identical to the logical bounds
without any data,

τ(m) ∈ [−1, 1], (5)
δ ∈ [−2, 2]. (6)

In other words, the pre-test design is completely uninformative about the causal effects of interest unless
one is willing to make additional assumptions about the joint distribution of Y∗i (t) and Yi(t).

We can derive an expression for the amount of priming bias as

τpre(m)−τ(m) = {P(Y∗i (1) = 0,Yi(1) = 1 ∣M∗i =m)−P(Y∗i (0) = 0,Yi(0) = 1 ∣M∗i =m)}
−{P(Y∗i (1) = 1,Yi(1) = 0 ∣M∗i =m)−P(Y∗i (0) = 1,Yi(0) = 0 ∣M∗i =m)}, (7)

where we have suppressed the conditioning on Zi = 0 to reduce notational burden.The first term of this
bias for the CATE is the effect of treatment on probability of being positively primed (moving from
Y∗i = 0 to Yi = 1) and the second term is the effect of treatment on being negatively primed (moving
from Y∗i = 1 to Yi = 0). Positively primed individuals in our application are those who would become
supportive of the candidate only when asked about land security prior to treatment. This bias is
unidentifiable because it depends on the joint distribution of the unprimed Y∗i (t) and primed Yi(t)
outcomes, but we only observe Yi(t) under the pre-test design.

Some scholars, such as Sheagley and Clifford (2025), have shown empirically that δ and δpre appear
close to each other in several experiments where the moderator was measured in a prior survey wave
(and so was less prone to priming bias). Should we conclude from this that future studies will not suffer
from priming bias? Perhaps, but we should properly view this as an additional assumption rather than
a result implied by the design of the experiment. In particular, we would have to assume that either
there is no priming at all, treatment does not affect priming, or that the treatment effects on positively
and negatively primed individuals cancel out. Below, we will see how to incorporate assumptions about
limited priming that would allow a sensitivity analysis for pretest designs.

4.1.1. Narrowing the Pre-test Bounds under Additional Assumptions
What assumptions can we place on the pre-test design to narrow the bounds? Any such assumption
would have to place restrictions on the joint distribution of the primed and unprimed outcomes.
A common set of assumptions for this type of setting would be a monotone treatment response
assumption for the priming effect (Manski 1997). In particular, we consider a priming monotonicity
assumption, which states that the effect of asking the moderator before treatment can only move the
outcome in a single direction.
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Assumption 2 (Priming Monotonicity). Yi(t) ≥ Y∗i (t) for all t = 0,1.
The assumption implies that the effect of moving from post-test (Zi = 1) to pre-test (Zi = 0), which

we call the priming effect, can only increase the outcome. In our application, this assumption implies
that asking about land rights before reading the campaign speech treatment increases support for the
hypothetical candidate. As stated, this assumption holds across levels of treatment, though it is possible
to assume the reverse direction (Yi(t) ≤ Y∗i (t)) or even to have a different effect direction for each level
of treatment.The assumption narrows the bounds on our quantities of interest, as stated in the following
proposition.

Proposition 1 (Pre-test Sharp Bounds). Let Ptzm =P(Yi = 1 ∣Ti = t,Zi = z,Mi =m). Under Assumptions
1 and 2, we have the following sharp bounds:

τ(m) ∈ [−P00m, P10m], (8)
and

δ ∈ [−P100−P001, P101+P000] . (9)

This proposition implies that, although priming monotonicity narrows the bounds compared to the
uninformative randomization bounds, the bounds still will always contain zero. Thus, without further
assumptions, the pre-test design cannot rule out no CATE for any level of the moderator nor can it rule
out no interaction.

4.1.2. Sensitivity Analysis for the Pre-test Design
Given the empirical results such as Sheagley andClifford (2025) that point to a limited role of priming in
some experimental settings, we now develop a sensitivity analysis for pre-test designs to determine how
sensitive results are to deviations from the “no priming bias” assumption. In particular, we constrain
the proportion of respondents primed, or more precisely, the proportion of respondents whose value of
Y∗i (t) is different from Yi(t). Formally, we state this restriction as

P(Y∗i (t) = 1,Yi(t) = 0 ∣M∗i =m)+P(Y∗i (t) = 0,Yi(t) = 1 ∣M∗i =m) ≤ θ (10)

for all t,m ∈ {0,1}. Note that if θ = 0, then we have Y∗i (t) = Yi(t) for all i, and the data under the pre-
test design alone identify the quantities of interest. By increasing the value of θ, a sensitivity analysis
gradually restricts the severity of the priming effects in the empirical setting.

Proposition 2 (Pre-test Sharp Bounds under Restricted Priming Effects). Suppose that Assumptions
1 and 2, and restriction (10) hold. Then, we have the following sharp bounds:

τ(m) ∈ [τpre(m)−θ,τpre(m)+θ], δ ∈ [δpre−2θ,δpre+2θ] .
This proposition states that if the proportion of primed respondents in each treatment arm is no

larger than θ, then we can bound the true interaction with an interval of length 4θ around the naïve
pre-test interaction (for the CATE, the interval width is exactly half, i.e., 2θ). These bounds can be
informative (that is, they exclude 0) if ∣δpre∣ > 2θ. Thus, researchers can conduct a sensitivity analysis by
setting θ to different values and see how the bounds change.

4.2. Post-test Design
Next, we consider the post-test design, where we observe (Yi,Mi,Ti) among the units for whom Zi = 1.
The randomization of the treatment implies the following ignorability assumption.

Assumption 3 (Post-Test Randomization).

{Yi(t,z),Mi(t),M∗i } ⊥⊥ Ti ∣ Zi = 1,
for t = 0,1.
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How informative is Assumption 3 alone about our quantities of interest (i.e., τ(m) and δ) without
making any other assumption? The standard CATE estimator would be unbiased for

τpost(m) ≡ P11m−P01m = E(Y∗i (1) ∣Mi(1) =m)−E(Y∗i (0) ∣Mi(0) =m), (11)

where the equality follows from Assumption 3 and the fact that P(Zi = 1) = 1 for all i.
Under the post-test design, we observe the true (i.e., unprimed) potential outcome of interest Y∗i (t),

and yet the moderator may be observed with error, i.e.,Mi(t) ≠M∗i . Similar to the case of the pre-test
design, therefore, τpost(m) does not generally equal τ(m) because the conditional distribution of Y∗i (t)
givenMi(t) =mmay differ from that of Y∗i (t) givenM∗i =m. In fact, τpost(m)may not equal τ(m) even
if the effects of treatment and moderator measurement timing do not change the marginal distribution
of the moderator, i.e., P(Mi(0) = m) = P(Mi(1) = m) = P(M∗i = m) for all m ∈ M. Restricting the
marginal distribution of the moderator does not help because effect heterogeneity is a function of the
joint distribution of the counterfactual outcomes and moderators. Thus, under the post-test design,
neither τ(m) nor δ is nonparametrically identified.

Despite the lack of point identification, the design can contain some information about our quantities
of interest.The following proposition derives the sharp randomization-only bounds under the post-test
design.

Proposition 3 (No-assumption Post-test Sharp Bounds). Let Pt = P(Yi = 1 ∣ Ti = t,Zi = 1). Under
Assumptions 3, we have δ ∈ [δL,δU], where

δL = −1−max{min(1−P0
P1

,
1−P1
P0
),min( P1

1−P0 ,
P0

1−P1 )},
δU = 1+min{max(1−P0

P1
,
1−P1
P0
),max( P1

1−P0 ,
P0

1−P1 )} . (12)

Furthermore, these bounds are sharp.

The proof of this result is given in Supplementary Material A.2 and relies on a standard linear
programming approach often used in bounding causal quantities (e.g., Balke and Pearl 1997). Unfortu-
nately, these bounds are often quite wide in practice. In particular, the bounds can never be narrower
than [−1,1] since the post-test data are completely uninformative about the true moderator. As a result,
the sharp bounds under the post-test design can be quite wide and sometimes cover the entire logical
range, [−2,2], for δ. In sum, without additional assumptions, the post-test design can only provide
limited information about the causal quantities of interest.

4.2.1. Narrowing the Post-test Bounds under Additional Assumptions
While the bounds only using the randomization can be too wide to be useful in practice, we may
be willing to entertain other assumptions on the causal structure that will narrow the bounds. We
rely on a principal stratification approach in which we stratify the units according to how their
moderator values react to treatment and moderator measurement timing (Frangakis and Rubin 2002).
Let μs(t) = P(Y∗i (t) = 1 ∣ Si = s), where Si represents the principal strata defined by the moderator,
{Mi(1),Mi(0),M∗i }. Without making any assumption, Si can take any of the 23 values in

S = {111,011,101,001,110,010,100,000}.
Let ρs = P(Si = s) be the probability of a unit falling into one of the strata, such that∑s∈S ρs = 1. Finally,
we denote the marginal probability of the true pre-test moderator as Q∗ = P(M∗i = 1).

The first assumption we consider is that the effect of post-treatment measurement of the moderator
has amonotonic effect on the moderator for every unit.
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Assumption 4 (Moderator Monotonicity). Mi(t) ≥M∗i for all t = 0,1.
In the context of the motivating example, this assumption requires no unit to have, say, lower land

security values if we ask about it after the respondent reads the politician’s speech rather than before.
While weaker than assuming there is no measurement error in the post-test moderator, the plausibility
of this assumption will depend on the study context. In the post-test design, we cannot verify this
assumption because we never observe M∗i . The assumption rules out several possible principal strata,
ensuring that Si can only take one of the following values: 111,110,010,100, or 000.4 We now present
the sharp bounds under this assumption.

Proposition4 (Post-test SharpBoundsunderMonotonicity). LetQtz =P(Mi = 1 ∣Ti = t,Zi = z). Under
Assumptions 3 and 4, we have sharp bounds δ ∈ [δL2,δU2], where

δL2 = P111Q11−P011Q01

Q∗
− P110(1−Q11)−P010(1−Q01)

1−Q∗
+max{P011Q01−Q∗,0}−max{P111Q11,Q11−Q∗}

Q∗(1−Q∗) ,

δU2 = P111Q11−P011Q01

Q∗
− P110(1−Q11)−P010(1−Q01)

1−Q∗
+min{0,Q∗−P111Q11}+min{P011Q01,Q01−Q∗}

Q∗(1−Q∗) .

We provide the derivation of these bounds (and those in the next proposition) in Supplementary
Material A.3.These bounds will be narrower than the randomization bounds given in Proposition 3 for
two reasons. First, with the randomization assumption alone, we could only leverage the observed strata
within levels of treatment—further stratification in terms of the moderator provided no information
because it placed no restriction on the relationship between the pre-test and post-test versions of the
moderator. Under moderator monotonicity (Assumption 4), we can leverage Ptzd andQtz to narrow the
bounds. Second, moderator monotonicity places bounds on the true value of Q∗ since it must be less
thanmin(Q11,Q01).

While the moderator monotonicity assumption does narrow the bounds, they are often still quite
wide and usually contain 0. To further narrow the bounds, we consider another assumption that the
moderator is stable in the control arm of the study.

Assumption 5 (Stable Moderator under Control). M∗i =Mi(0).
This assumption implies that the moderator under control in the post-test design is the same as the

moderator as if it was measured pre-test. This assumption may be plausible in experimental designs
where the control condition is neutral or similar to the pre-test environment. In our empirical example,
this wouldmean that hearing the generic campaign speech, which does notmention the land issue, does
not affect perceived land insecurity. Under both Assumptions 4 and 5, the only values that principal
strata that Si can take are {111,100,000}, further narrowing the bounds as follows.
Proposition 5 (Post-test Sharp Bounds under Moderator Monotonicity and Stability). Under
Assumptions 3, 4, and 5, we have Q∗ =Q01 and sharp bounds δ ∈ [δL3,δU3], where

δL3 = P111Q11

Q01
−P011− P110(1−Q11)

1−Q01
+P010−min{1, P111Q11

Q11−Q01
} ⋅ Q11−Q01

Q01(1−Q01),

δU3 = P111Q11

Q01
−P011− P110(1−Q11)

1−Q01
+P010−max{0, P111Q11−Q01

Q11−Q01
} ⋅ Q11−Q01

Q01(1−Q01) .

4While we present a positive version of monotonicity for both treatment levels, it is possible to derive bounds under a
negative version of the assumption or with differing directions for each treatment condition.
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These bounds demonstrate how the magnitude of the treatment effect on the moderator affects
identification in the post-test design. A unit’s moderator is affected by treatment whenever Mi(1) ≠
Mi(0), which corresponds to the Si = 100 principal stratum under monotonicity and stable moderator
under control. Note that under these assumptions, ρ100 represents the magnitude of the treatment-
moderator effect. Since Q11 = ρ111 + ρ100 and Q01 = ρ111, we can identify this effect with the usual
difference in (population) means, Q11 −Q01 = ρ100. The maximum possible width of the sharp bounds
depends on this effect, with

max{δU3−δL3} = Q11−Q01

Q01(1−Q01) =
ρ100

ρ000(ρ111+ρ100),

so that the bounds can be relatively informative if the post-treatment average effect on the moderator
is small.

4.2.2. Sensitivity Analysis under Limited Effects on the Moderator
While themonotonicity and stable moderator assumptions can considerably narrow the nonparametric
bounds on our causal quantities, they rule out entire principal strata, which may be stronger than is
justified for a particular empirical setting. We now consider an alternative approach to bounds that
does not rule out any particular principal strata but rather places restrictions on the proportion of units
whose moderators are affected by treatment.

In particular, we propose a sensitivity analysis that limits the proportion of respondents whose
moderator value changes between the pre-test and post-test, regardless of the treatment condition
(contrast this with Assumption 5 which applies to the control condition only). We operationalize this
via the following constraint,

P(Si ∉ {111,000}) ≤ γ.
Note that γ must be greater than ∣Q11 −Q01∣ for the bounds to be feasible since ∣Q11 −Q01∣ = ∣ρ101 +
ρ100−ρ011−ρ010∣. We vary the value of γ from ∣Q11−Q01∣ to 1 and see how the nonparametric bounds
on the value of δ change as we gradually allow a larger treatment effect on the moderator. We obtain
these new bounds by adding this additional constraint to linear program, which we can then solve
numerically. This approach is a more flexible way to allow for limited heterogeneous treatment effects
on the moderator in any direction. Researchers can also combine this sensitivity analysis with the
monotonicity and stable moderator assumptions.

4.3. Randomized Placement Design
Finally, we examine a combined pre/post design called the randomized placement design, where in
addition to treatment, the timing of moderator measurement, Zi, is also randomized. Bounds from this
design will improve upon the post-test bounds because we can identify the marginal probability of the
true moderator as

Q∗ = P(M∗i = 1) = P(Mi = 1 ∣ Zi = 0).
Unfortunately, for the randomization-only bounds in Equation (12), the sign of δ cannot be identified
for any value of Q∗ ∈ (0,1).

With the randomized placement design, we have a slightly more complicated set of principal strata
since now we must handle both the pre-test and post-test potential outcomes. In particular, we define
the following quantities that characterize the joint distribution of the pre-test and post-test potential
outcomes for a given treatment level, t, and principal strata, s:

ψy1y0s(t) = P(Y∗i (t) = y1,Yi(t) = y0 ∣ Si = s)
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whereψy1y0s(t) ≥ 0 and∑y1∑y0 ψy1y0s(t) = 1 for all t. Furthermore, let S∗m = {s ∶ s ∈ S,M∗i =m} be the set
of principal strata with the true value of the moderator equal to m. Then, we can write the interaction
between the treatment and the moderator as

δ = 1
∑
y0=0

⎧⎪⎪⎨⎪⎪⎩
∑

s1∈S∗1

ρs1
Q∗
(ψ1y0s1(1)−ψ1y0s1(0))− ∑

s0∈S∗0

ρs0
1−Q∗ (ψ1y0s0(1)−ψ1y0s0(0))

⎫⎪⎪⎬⎪⎪⎭
,

and the observed strata in the pre-test and post-test arms as

Pt1mQt1 = P(Yi = 1,Di =m ∣ Ti = t,Zi = 1) =
1
∑
y0=0

∑
s∈S(t,1,m)

ψ1y0s(t)ρs,

Pt0m∗ = P(Yi = 1 ∣ Ti = t,Zi = 0,Mi =m∗) = ∑
1
y1=0∑s∈S∗m∗

ψy11s(t)ρs
∑s∈S∗m∗

ρs
,

for all values of y,m, t, andm∗.
Without further assumptions, the pre-test data are helpful only insofar as they identify the marginal

distribution of the moderator, Q∗. We can narrow the bounds under the randomized placement
design using all of the substantive assumptions described above: priming monotoncity, moderator
monotonicity, and stability under control. Each of these implies restrictions on the above principal strata
that can be incorporated into a linear programming problem, which we solve numerically to derive the
bounds.

4.3.1. Sensitivity Analysis in the Randomized Placement Design
The randomized placement design allows us to combine the sensitivity analysis procedure of the pre-
and post-test designs. In particular, we can impose both of the restrictions from above simultaneously:

γ ≥ P(Si ∉ {111,000}),
θ ≥ P(Y∗i (t) = 1,Yi(t) = 0 ∣M∗i =m∗)+Pr(Y∗i (t) = 0,Yi(t) = 1 ∣M∗i =m∗).

Again, these conditions restrict (a) howmuch the treatment andmoderatormeasurement timing affects
themoderator, and (b) howmuch themoderatormeasurement timing affects the outcome. To incoprate
these restrictions into the bounds, we rewrite them in the principal strata described above:

(1−ρ111−ρ000) ≤ γ,
∑s∈S∗m∗

(ψ10s(t)+ψ01s(t))ρs
∑s∈S∗m∗

ρs
≤ θ.

Then, we can easily add these restrictions to the optimization problem that produces the bounds on the
interaction effect.

We can conduct sensitivity analyses on the randomized placement design by varying the values of γ
and θ and seeing how the values of the bounds change. There are several ways to conduct and present
such a two-dimensional sensitivity analysis. One would be to plot the parameters on each axis and
demarcate the regions where the bounds are informative (e.g., do not include zero) and where they are
not. A second approach would be to choose a small value for one of the two parameters consistent with
a researcher’s beliefs. For instance, if a researcher believes that the moderator is unlikely to be affected
by treatment, then they could choose a small value for γ and investigate the sensitivity of the bounds to
different amounts of priming, as measured by θ.
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5. Statistical Inference

The above bounds are stated in terms of population quantities when, in fact, we only ever have sample
data.We can easily obtain estimates for the bounds by plugging in sample versions of these probabilities
or, for the randomized placement design, solving the linear programming problem using the sample
data. Obtaining valid confidence intervals in this setting is more challenging, since standard asymptotic
analyses break down due to the maximum and minimum operators causing nondifferentiability. This
problem can lead the standard nonparametric bootstrap to have problematic theoretical properties
(Andrews and Han 2009; Fang and Santos 2019).

Furthermore, confidence intervals for the bounds tend to be overly conservative when the target of
inference is the parameter δ rather than the bounds themselves. As pointed out by Imbens and Manski
(2004), this occurs because the true parameter cannot simultaneously be close to the upper and lower
bound at the same time.This fact allows us to narrow the confidence intervals by a data-driven amount
while maintaining nominal coverage for the parameter of interest.

Our approach to inference combines the Imbens and Manski (2004) approach with estimated
standard errors of the bounds from the the nonparametric bootstrap. While the bootstrap may have
theoretical problems, we find in simulations that this approach produces conservative confidence
intervals that have slightly higher-than-nominal empirical coverage. In Supplementary Material B, we
provide further details of our approach to estimation. In Supplementary Material C, we also develop
a Bayesian model-based approach to incorporate additional pre-treatment covariates that might be
available to researchers.

6. Empirical Example

To illustrate how our approach can be applied to each of these designs, we return to the example from
Horowitz and Klaus (2020) introduced in Section 2. Recall that the interaction in this case shows how
the effect of land-based appeals varies by a respondent’s level of land security.

6.1. Setup and Assumptions
First, it is worth discussing the assumptions beyond randomization in this context. Assumptions 4
(moderator monotonicity) and 5 (stability) are not guaranteed by the design and require a substantive
justification. In this case,moderatormonotonicity requires the placement of the land insecurity question
after treatment shift perceived land insecurity in the same direction for all respondents (or have no
effect). We assume a positive (or zero) individual effect on land insecurity, consistent with the estimate
ATE—though it is substantively small and not statistically significant (β̂ = 0.04, p= 0.23). Given that one
part of the active treatment was intended to induce fear of “land grabbing,” it seems somewhat plausible
that measuring perceived land rights after treatment would only increased feelings of insecurity.

The assumption of stability means that hearing the generic campaign speech (with no appeals to
the land issue) has no individual-level effect on perceived land insecurity when it is measured post-
treatment. Again, this assumption cannot be conclusively tested with the observed data since we cannot
estimate individual-level effects. However, with the randomized placement design, we can estimate the
ATE of the pre/post randomization on the moderator among respondents in the control group. Our
estimate of the ATE is very small and not statistically significant (β̂ = −0.005, p = 0.91), which is at least
consistent with the assumption of a stable moderator under control.

6.2. Comparing the Sharp Bounds across Different Assumptions
Figure 2 displays the non parametric bounds (with 95% confidence intervals) for δ under different
sets of assumptions applied to the post-test data (in grey), the pre-test (in blue), and the combined
randomized placement design (labeled “Prepost” in black). We also include the naïve OLS estimate
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Randomization Randomization
+ Mod. Monotonicity

Randomization
+ Stability

Randomization
+ Pri. Monotonicity
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+ Pri. Monotonicity
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Figure 2. Estimated nonparametric bounds (thick bars) and 95% confidence intervals (thin bars) under different designs and

assumptions. The final panel contains OLS point estimates and 95% confidence intervals.

with 95% confidence interval for comparison. Some of the designs are missing from panels because
an assumption does not apply to that design (for example, moderator monotonicity under the pre-test
design).

Assuming only randomization, the nonparametric bounds are uninformative of the sign of δ, and
are much wider than the confidence interval of the naïve OLS estimate for all of the designs. Adding the
assumption of moderator monotonicity reduces the width of the bounds, especially on the combined
prepost data. Unfortunately, the confidence intervals become considerably larger, especially for the post-
test data, in which theMi = 1 group is small.

The assumption of stability tightens the bounds to a similar degree for the post-only and pre-post
data. Under the pre-test assumptions of randomization, moderator monotonicity, and stability, the
bounds exclude zero for both the post-test and randomized placement designs, though the confidence
interval for the latter contains zero. Furthermore, the bounds for this design are wider under all
three assumptions than under just randomization and monotonicity since, in finite samples, the pre-
test mean ofMi differs from the post-test mean ofMi in the control arm. We would expect a difference
by random chance even when stability holds, but the bounds may widen slightly to accommodate this
divergence between the population and sample quantities.

Priming monotonicity also narrows the bounds for the pre-test and random placement designs,
though not by as much as moderator monotonicity. The combination of the two monotonicity assump-
tions, however, recovers bounds that are close to the OLS estimate and has confidence intervals that
barely contain zero.

In sum, the nonparametric bounds do not support the hypothesis of a positive interaction effect
under the randomization assumptions alone. It is only with a combination of additional substantive
assumptions—moderator monotonicity, priming monotonicity, and stability—that the sharp bounds
produce results qualitatively similar to the naïve OLS estimate of a positive interaction effect, though
the designs differ on whether this is statistically significant or not.

6.3. Implementing the Sensitivity Analysis
We now apply our sensitivity analysis procedures to this experiment. These procedures involve varying
the proportion of respondents for whom the placement of the moderator measure affects their mod-
erator value (land security) or their outcome (candidate support), labeled γ and θ respectively. We can
apply the γ and θ sensitivity analyses to the post-test and pre-test designs, respectively, and we can
combine them in the randomized placement design.

Figure 3 shows the post-test bounds as a function of γ under just the randomization assumption.
While γ can theoretically range up to 1, here we limit it to 0.5 to aid presentation since the bounds
quickly stabilize.The black lines denote the upper and lower bounds, and the shaded ribbon denotes the
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Figure 3. Post-test sensitivity analysis. Nonparametric bounds (black lines) with 95% confidence intervals (grey ribbon) as a function

of γ, the proportion of respondents whose value of the moderator variable (land insecurity) is affected by post-test measurement.

95% confidence intervals around the bounds. The lower bound crosses 0 when γ = 0.07—that is, when
no more than 7% of respondents are affected by the post-treatment measurement of the moderator.
The 95% confidence interval contains 0 even for the minimum possible value of γ consistent with the
observed data (0.02).The sensitivity analysis shows that the sharp bounds are highly sensitive to changes
in the degree of post-treatment bias for small values of γ.

To interpret this sensitive analysis, researchers will need to draw on their substantive knowledge to
assess the plausible range of γ. The estimated ATE on the post-treatment moderator is 0.02 (p = 0.59),
but without a monotonicity assumption this may include respondents with positive and negative effects
that offset their effects.Wemight assume that most of the effect of the land rights prime would accrue to
respondents with less certain responses such as feeling “somewhat secure” in their land rights and that
had been personally affected by prior ethnic conflict. Using the pre-test data, we find that this is 12% of
the sample, which we might consider a reasonable value of γ. While it may seem like a relatively minor
problem if only 12% of the sample is affected, our sensitivity analysis shows that the nonparametric
boundswould be about eight timeswider ([−1.02,1.14]) compared to the casewhereγ is at itsminimum
([0.38,0.64]).

For priming bias in the pre-test design, we can assess sensitivity as a function of θ, the proportion
of respondents whose outcome value is affected by when the moderator is measured. Figure 4 shows
the bounds as a function of θ under priming monotonicity. When θ = 0, we are assuming that priming
bias does not exist so the true interaction is point identified in the pre-test arm, though the confidence
interval at θ = 0 already includes zero. The estimated lower bound crosses zero at approximately 0.2,
when up to 20% of respondents are primed, which would be a rather large effect of priming.

Finally, in the randomized placement design, we combine these two tests by restricting both γ and θ.
Figure 5 shows the prepost bounds as a function of γ under two different assumption about the amount
of priming: limited priming θ ≤ 0.25 andunrestricted priming θ ≤ 1. In both settings, the bounds initially
shrink as γ increases, most likely to due to the low values of γ being inconsistent with the data. The
bounds then begin to widen, though they widenmuchmore for the unrestricted priming compared the
limited priming setting.
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Figure 4. Pre-test sensitivity analysis. Nonparametric bounds (black lines) with 95% confidence intervals (grey ribbon) as a function

of θ, the proportion of respondents who are primed by asking the moderator before treatment, under priming monotonicity

assumption.
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Figure 5. Randomized placement design sensitivity analysis. Nonparametric bounds (black lines) and 95% confidence intervals (grey

ribbons) as a function of the post-test effect on themoderators and the amount of priming. The limited priming assumption assumes

θ ≤ 0.25 and the unrestricted priming has θ ≤ 1.

7. Practical Guidance

What does all of this mean for the practice of experimental design? We recommend the following steps
when attempting to estimate a CATE or interaction effect in an experimental context.

• Tailor the experimental design to the target moderator.Moderators that are fixed demographic
traits about a respondent are less likely to be affected by treatment butmight induce priming.Other
moderators might work in reverse. Reasoning through the potential biases can provide guidance
on which design to select. One can even adjust the relative size of the pre-test and post-test groups
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in the randomized placement design to tailor the approach to address the most likely bias. Finally,
researchers can use the randomized placement design in a pilot study to assess the potential average
priming and post-treatment effects.

• When possible, use indirect or distantlymeasuredmoderators. Priming bias occurs because the
act of measuring a moderator changes how a respondent reacts to treatment. We can safely ignore
priming bias for indirectly measured moderators such as information about a respondent from an
external database (e.g., voter files or census information about their local community). If sufficient
resources are available, an earlier survey on the same respondents tomeasure themoderatorsmight
provide a long enough wash-out period to avoid priming bias, albeit with the possibility that the
values of the moderators might change over the period. Similarly, many survey vendors provide
basic demographic information on their panelists that was collected in earlier surveys.

• Use the above bounds and sensitivity analyses to explore robustness. Short of indirectly mea-
sured moderators, we can never fully rule out priming or post-treatment bias. The bounds and
sensitivity analyses about can help researchers and readers understand when inferences are robust
to small amounts of these biases.This transparency will help researchers understand the strengths
and weaknesses of the scientific evidence.

8. Concluding Remarks

This paper addresses a central tension in survey methodology: how should researchers assess priming
bias versus post-treatment bias when designing a survey experiment? The pre-test design avoids post-
treatment bias but may suffer from priming bias. In contrast, the post-test design is free of priming
bias and yet possibly leading to post-treatment bias. We conduct a formal analysis to show that neither
design is informative about the moderation effect of interest without additional assumptions. We also
analyze the randomized placement design, which is a mix of pre-test and post-test designs.

Our analysis derives sharp bounds for themoderation effect and shows how these bounds vary under
additional substantive assumptions.We also provide sensitivity analyses for priming and post-treatment
biases by varying the proportion of respondents whose moderator value changes in the post-test design
and the proportion of respondents for whom the pre-test measurement of the moderator would prime
their responses. We demonstrate how these tools can be used to diagnose and assess the severity of
post-treatment bias and priming bias by applying them to a survey experiment regarding the effect of
land-based appeals by politicians on electoral support in Kenya.

Open questions remain from our approach here. In particular, future work could optimize the
randomized placement design to balance the priming and post-treatment bias concerns. In addition, we
could consider how integrating separate pre-test surveys, often givenweeks ormonths before treatment,
might allow for a different set of plausible assumptions and identification. Lastly, the analytic approach
used in this paper can be applied to other problems in survey experiments. For example, our bounds
can be applied to cases where the causal moderation effects are estimated conditional on other pre-
treatment covariates (Bansak 2021). Beyond moderation, it is also of interest to investigate how the use
of attention and manipulation checks can affect the validity of causal inference in survey experiments
using the proposed approach (Aronow, Baron, and Pinson 2019; Berinsky, Margolis, and Sances 2014;
Kane and Barabas 2019; Varaine 2023).
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