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A Proofs

A.1 Pre-test bounds

Proof of Proposition 4. Note that we can write τpre(m) = P10m − P00m. From expression 7, we

can write the true CATE under priming monotonicity as

τ(m) = P10m − P00m − {P(Y∗i (1) = 0, Yi(1) = 1 | M∗i = m)−P(Y∗i (0) = 0, Yi(0) = 1 | M∗i = m)} .

We can bound the unknown probabilities as

0 ≤ P(Y∗i (t) = 0, Yi(t) = 1 | M∗i = m) ≤ Pt0m.

Thus, a sharp upper bound on τ(m) would because

P10m − P00m + P00m = P10m,

and a sharp lower bound would be

P10m − P00m − P10m = −P00m,

which establishes the bounds for τ(m). For the upper δ = τ(1)− τ(0), we simply use the upper

bound for τ(1) and the lower bound for τ(0) and vice versa for the lower bound for δ.

Proof of Proposition 2. Under priming mononoticity, we can write the true CATE as

τ(m) = τpre(m)− {P(Y∗i (1) = 0, Yi(1) = 1 | M∗i = m)−P(Y∗i (0) = 0, Yi(0) = 1 | M∗i = m)} .

The restriction on the amount of priming bias implies that

0 ≤ P(Y∗i (t) = 0, Yi(t) = 1 | M∗i = m) ≤ θ,
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for all t. Thus, clearly we have

τ(m) ∈
[
τpre(m)− θ, τpre(m) + m

]
.

Taking the maximum and minimum of τ(1) and τ(0), respectively, establishes the upper bound for

δ. Reversing this gives the lower bound.

A.2 Post-test randomization bounds

Proof of Proposition 3. Under Assumption 3, the information about the parameter of interest comes

from Pt = P(Yi = 1 | Ti = t, Zi = 1) alone. This is because the distribution of the post-test

moderators provides no information about the pre-test moderator. Recall that

Pt = πt1Q∗ + πt0(1−Q∗), (1)

where πtm = P[Yi(t, 1) = 1 | M∗i = m] and Q∗ = P[M∗i = 1].

Below, we show how to derive the upper bound for δ. The derivation of the lower bound is

similar. Conditional on Q∗, we can define the following linear program:

max π11 − π01 − π10 + π00

subject to πt1Q∗ + πt0(1−Q∗) = Pt for t = 0, 1,

0 ≤ πtm ≤ 1 ∀(t, d) ∈ {0, 1}2

We can convert this to an augmented form by adding slack variables,

max π11 − π01 − π10 + π00

subject to πt1Q∗ + πt0(1−Q∗) = Pt for t = 0, 1

πtm + stm = 1 ∀(t, m) ∈ {0, 1}2

{π11, π01, π10, π00, s11, s01, s10, s00} ≥ 0.

The feasibility of various basic solutions here will depend on the relationship between the ob-

served probabilities and Q∗. In Table SM.1, we show basic feasible solutions for the four different

conditions relating P1 and P0 to Q∗. Under each condition, it is straightforward to determine that
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Table SM.1: Optimal solutions to the linear program under different conditions

Condition π11 π10 π01 π00 s11 s01 s10 s00 Value
P1 > Q∗, P0 > 1−Q∗ P1

Q∗ 0 0 P0
1−Q∗ 1− P1

Q∗ 1 1 1− P0
1−Q∗

P1
Q∗ +

P0
1−Q∗

P1 < Q∗, P0 > 1−Q∗ 1 P1−Q∗
1−Q∗ 0 P0

1−Q∗ 0 1 1 1− P0
1−Q∗

1−P1+P0
1−Q∗

P1 > Q∗, P0 < 1−Q∗ P1
Q∗ 0 P0−1+Q∗

Q∗ 1 1− P1
Q∗ 1 1 0 P1−P0+1

Q∗
P1 < Q∗, P0 < 1−Q∗ 1 P1−Q∗

1−Q∗
P0−1+Q∗

Q∗ 1 0 1 1 0 1−P1
1−Q∗ +

1−P0
Q∗

the basic feasible solution is also optimal since there is no entering variable that can increase the

value of the quantity of interest. Thus, we know that

δ ≤ min
{

1 + P1 − P0

Q∗
,

1− P1 + P0

1−Q∗
,

1− P0

Q∗
+

1− P1

1−Q∗
,

P1

Q∗
+

P0

1−Q∗

}
A similar derivation shows that

δ ≥ max
(
−1− P1 + P0

Q∗
, −1 + P1 − P0

1−Q∗
, − P0

Q∗
− P1

1−Q∗
, −1− P1

Q∗
− 1− P0

1−Q∗

)
.

Taking a look at these bounds, suppose that P1 ≥ 1− P0, then the upper bound as a function
of Q∗ is:

U(Q∗) =


P0+(1−P1)

1−Q∗ if Q∗ ≤ 1− P0
1−P0

Q∗ + 1−P1
1−Q∗ if Q∗ ∈ [1− P0, P1]

P1+(1−P0)
Q∗ if Q∗ ≥ P1

Notice that the numerators of all these functions are positive, so the first bounding function
(P0 + 1 − P1)/(1 − Q∗) is montonically increasing over its range and the third, (P1 + (1 −
P0))/Q∗ is monotonically decreasing over its range. Finally, inspection of the middle bounding
function shows that it is convex over its range. This implies that the this function must have its
maximum at one of the bound points, 1 − P0 or P1. Taking the maximum of these two values,
and comparing them to the maximum two values from the situation when P1 ≤ 1− P0 gives the
expression of the bounds in the result. A similar approach applies to the lower bounds as well.

Sharpness of these bounds is implied by the linear nature of the optimization function and the
convexity of the feasible set. If these bounds were not sharp, this would imply that that there
are bounds sharper than these that contain all values of δ consistent with the data and maintained
assumptions. But this is clearly contradicted by the fact that the solutions in Table SM.1 are feasible
and would fall outside these supposedly sharper bounds.

A.3 Bounds under additional assumptions

To derive bounds under additional assumptions, we first derive bounds conditional on the strata

probabilities.
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Lemma SM.1. The bounds on δ for given values of ρ are δ ∈ [δL(ρ), δU(ρ)], where

δU(ρ) = P111

(
Q11

Q∗

)
− P011

(
Q01

Q∗

)
− P110

(
1−Q11

1−Q∗

)
+ P010

(
1−Q01

1−Q∗

)

+
1

Q∗(1−Q∗)
min


P110(1−Q11)

ρ011 + ρ001
Q∗ − P111Q11

+
1

Q∗(1−Q∗)
min


P011Q01

ρ110 + ρ010
1−Q∗ − P010(1−Q01)

 ,

and,

δL(ρ) = P111

(
Q11

Q∗

)
− P011

(
Q01

Q∗

)
− P110

(
1−Q11

1−Q∗

)
+ P010

(
1−Q01

1−Q∗

)

+
1

Q∗(1−Q∗)
max


−P111Q11
−ρ110 − ρ100

−1 + Q∗ + P110(1−Q11)

+
1

Q∗(1−Q∗)
max


−P011Q01
−ρ001 − ρ101
−Q∗ + P011Q01

 .

Proof. Conditional on ρs and Q∗, deriving the bounds on δ is a standard linear programming prob-

lem. We now describe the process for deriving these bounds at a general level. Without any as-

sumptions, we are interested in maximizing or minimizing the objective function,

δ =P111

(
Q11

Q∗

)
− P011

(
Q01

Q∗

)
− P110

(
1−Q11

1−Q∗

)
+ P010

(
1−Q01

1−Q∗

)
+ µ011(1, 1)

ρ011

Q∗(1−Q∗)
+ µ001(1, 1)

ρ001

Q∗(1−Q∗)

− µ110(1, 1)
ρ110

Q∗(1−Q∗)
− µ100(1, 1)

ρ100

Q∗(1−Q∗)

+ µ110(0, 1)
ρ110

Q∗(1−Q∗)
+ µ010(0, 1)

ρ010

Q∗(1−Q∗)

− µ101(0, 1)
ρ101

Q∗(1−Q∗)
− µ001(0, 1)

ρ001

Q∗(1−Q∗)
,

subject to the constraints

P111Q11 = µ111(1, 1)ρ111 + µ101(1, 1)ρ101 + µ110(1, 1)ρ110 + µ100(1, 1)ρ100

P011Q01 = µ111(0, 1)ρ111 + µ011(0, 1)ρ011 + µ110(0, 1)ρ110 + µ010(0, 1)ρ010

P110(1−Q11) = µ011(1, 1)ρ011 + µ110(1, 1)ρ110 + µ010(1, 1)ρ010 + µ000(1, 1)ρ000

P010(1−Q01) = µ101(0, 1)ρ101 + µ001(0, 1)ρ001 + µ100(0, 1)ρ100 + µ000(0, 1)ρ000

0 ≤ µs(t) ≤ 1, ∀s, t.

For this step, we do not need to specify constraints on ρs because we consider them fixed (and Q∗

is a linear function of ρs). The simplex tableau method yields the given bounds.
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Proof of Proposition 4. Recall the constraints on the strata probabilities:

Q11 = ρ111 + ρ101 + ρ110 + ρ100

Q01 = ρ111 + ρ011 + ρ110 + ρ010

Q∗ = ρ111 + ρ011 + ρ101 + ρ001,

Under monotonicity, we only have strata Si ∈ {111, 110, 010, 100, 000}, so we have Q∗ = P[M∗i =

1] = ρ111 and ρ110 + ρ010 = Q01 −Q∗ and ρ110 + ρ100 = Q11 −Q∗. Plugging these values into

the bounds from Lemma SM.1, we obtain

δU(Q∗) = P111

(
Q11

Q∗

)
− P011

(
Q01

Q∗

)
− P110

(
1−Q11

1−Q∗

)
+ P010

(
1−Q01

1−Q∗

)

+
1

Q∗(1−Q∗)
min


P110(1−Q11)

0
Q∗ − P111Q11

+
1

Q∗(1−Q∗)
min


P011Q01

Q01 −Q∗
1−Q∗ − P010(1−Q01)

 ,

and,

δL(Q∗) = P111

(
Q11

Q∗

)
− P011

(
Q01

Q∗

)
− P110

(
1−Q11

1−Q∗

)
+ P010

(
1−Q01

1−Q∗

)

+
1

Q∗(1−Q∗)
max


−P111Q11
−Q11 −Q∗

−1 + Q∗ + P110(1−Q11)

+
1

Q∗(1−Q∗)
max


−P011Q01

0
−Q∗ + P011Q01

 .

We further simplify the upper bound expression by noting that P110(1−Q11) ≥ 0 and Q01 −

Q∗ ≤ 1− Q∗ − P010(1− Q01). The lower bound simplifies because Q11 − Q∗ ≤ 1− Q∗ −

P110(1− Q11) and P011Q01 ≥ 0. Removing these extraenous conditions gives the result in the

text.

Proof of Proposition 5. Under the maintained assumptions, Q∗ = Q01, which we plug into the

expression of Proposition 4. Then, the result is immediate upon noting that P011Q01 − Q01 ≤ 0,

P011Q01 ≥ 0 and rearranging terms.

For calculating the bounds under the sensitivity constraints, we can take the bounds from Lemma SM.1

and solve a corresponding linear programming problem to optimize them with respect to the princi-

pal strata probabilities. For example, depending the observed data, the upper bound will depend on
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ρ011 + ρ001, ρ110 + ρ010, or ρ011 + ρ001 + ρ110 + ρ010. To find the upper bound across values of ρ,

we apply the linear programming machinery to finding the upper bound for each of these quantities

subject to the constraints that

Q11 = ρ111 + ρ101 + ρ110 + ρ100

Q01 = ρ111 + ρ011 + ρ110 + ρ010

Q∗ = ρ111 + ρ011 + ρ101 + ρ001,

where 0 ≤ ρs ≤ 1 for all s and ∑s∈S ρs = 1. Note that for the sensitivity analysis, we may impose

additional constraints on ρs in this step. As an example, for the objection function of ρ011 + ρ001,

we have the upper bound

min
{

1−Q11, Q∗, 1−Q01 + Q∗,
1
2
(1−Q11 + Q∗), 1 + Q01 −Q11

}
.

Plugging these bounds into the upper bound δU(ρ) will yield an upper bound purely as a function

of observed parameters and Q∗ and γ ( the sensitivity parameter). Under some of our assumptions,

inspection of the resulting functions reveals that the maximum of these functions can only occur

at a handful of critical values of Q∗ which can be evaluated and compared quickly. Otherwise,

we use a standard optimization routine to find the value of Q∗ that maximizes the upper bound or

minimizes the lower bound.

B Estimation and Inference Details

The discussion of the bounds in the main text focused on population level bounds—that is, we iden-

tified the bounds in terms of population quantities such as Ptzm. Estimation and inference for the

bounds with a sample poses some important difficulties. The most obvious way to estimate these

bounds is to plug in sample version of the population quantities and solve the above linear program-

ming problem to obtain bounds. Unfortunately, the asymptotic distribution of estimators based on

this plug-in approach do not have the standard asymptotics due to the lack of differentiability of the

bounds as a function of the data. Andrews and Han (2009) show that naive bootstrap methods are

not valid for these types of estimators due to these issues.
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Below we mostly focus on the random placement design, where estimation and inference is

the most complicated. In the pre-test design, the bounds are simple functions of the parameters

of interest, so we can use standard asymptotic variance estimators, combined with the approach of

Imbens and Manski (2004) to obtain confidence intervals for the parameters of interest. For the

post-test bounds, we obtain standard errors for the bounds based on the nonparametric bootstrap

and then use these in the approach of Imbens and Manski (2004). In simulations, we found this to

have similar performance to the more complicated union bound approach of Ye et al. (2023).

B.1 Estimation and inference for the random placement design

For the random placement design, we do not generally have closed-form expressions for the bounds,

and so we can reformulate the estimation and inference problem based on moment conditions that

feed into sample versions of a population criterion function (Chernozhukov, Hong and Tamer,

2007). In the general analysis of the random placement design, we define the parameters of our

model as

ψy1y0,m1(t, m0) = Pr[Y∗i (t) = y1, Yi(t) = y0, Mi(t) = m1 | M∗i = m0],

so that the parameter of interest can be written as

δ = ∑
y0m1

ψ1y0m1(1, 1)− ψ1y0m1(0, 1)− ψ1y0m1(1, 0) + ψ1y0m1(0, 0),

with constraints
0 ≤ ψy1y0,m1(t, m0) ≤ 1

1

∑
y1=0

1

∑
y0=0

1

∑
m1=0

ψy1y0,m1(t, m0) = 1.

Let Wi = (Yi, Mi, Ti, Zi) be the observed data vector with possible realized value w ≡ (wy, wm, wt, wz).

Abusing notation, we let w1 = (wy, wm, wt, 1) and w0 = (wy, wm, wt, 0). The randomization and
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consistency assumptions imply the following moment conditions:

E[gw1(Wi, ψ) | Zi = 1] = P(Yi = wy, Mi = wm, Ti = wt | Zi = 1)

−Q∗

(
∑
y0

ψwyy0wm(wt, 1)

)
− (1−Q∗)

(
∑
y0

ψwyy0wm(wt, 0)

)

E[gw0(Wi, ψ) | Zi = 0] = P(Yi = wy, Ti = wt | Mi = wm, Zi = 0)−
(

∑
y1

∑
m1

ψy1wym1(wt, wm)

)
.

There are d1 = 8 for the post-test data and d0 = 8 restrictions for the pre-test data.

Define rd(ψ) encode the deterministic restrictions on the ψ values and let Ψ†
d = {ψ : rd(ψ) ≥

0} be the values of the underlying parameters that satisfy these restrictions. These restrictions

include assumptions like monotonicity that would cause certain ψ values to be set to zero or the

sensitivity analysis specifications that limit the size of a group of ψ values. Under these maintained

assumptions, we can characterize the identified set as

Ψ? = {ψ ∈ Ψ†
d : E[gw1(Wi, ψ)] = 0, E[gw0(Wi, ψ)] = 0 ∀w1, w0 ∈ {0, 1}3}.

One way to define a distance from the identified set is with a population criterion function.

Let the moment conditions be indexed by j such that j = 1, . . . , 8 correspond to {gw1} and j =

9, . . . , 16 correspond to {gw0}. Then, the population criterion (loss) function is

L(ψ) =
16

∑
j=1
|E[gj(Wi, ψ)]| (2)

Following Torgovitsky (2019), we use absolute value loss here to ensure that we can leverage linear

programming techniques for computational convenience. We can obtain an empirical version of

the criterion,

Ln(ψ) =
16

∑
j=1

√
n|gj(Wi, ψ)|, (3)

where, for instance,

gw1
(Wi, ψ) = Pn(Yi = wy, Mi = wm, Ti = wt | Zi = 1)

− Q̂∗

(
∑
y0

ψwyy0wm(wt, 1)

)
− (1− Q̂∗)

(
∑
y0

ψwyy0wm(wt, 0)

)
,
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and Pn is the in-sample distribution.

We could proceed with estimating the bounds for a given set of assumptions by searching over

the parameter space such that Ln = 0, but this is often a fragile approach. In particular, it may be

the case that restrictions hold in the population but fail to hold in empirical samples due to sampling

variability so that the minimum value of Ln is strictly greater than 0. As an alternative approach, we

can first find the minimum value of Ln in the sample and then find extreme values of the parameter

under parameter values that are close to that minimum.

We first define the sample minimum of the criterion function under the maintained deterministic

restrictions,

Ln = inf
ψ∈Ψ†

d

Ln(ψ). (4)

We can then estimate the upper and lower bounds by finding the minimum and maximum values of

δ that come close to this value:

δ̂L = min
ψ∈Ψ†

d

δ(ψ) s.t. Ln(ψ) ≤ Ln(1 + εn),

δ̂U = max
ψ∈Ψ†

d

δ(ψ) s.t. Ln(ψ) ≤ Ln(1 + εn).

The tuning parameter εn controls how close we require the criterion function of the bounds to be

to the overall sample minimizer. This approach requires εn → 0 as n→ ∞. We take εn = 0.25 in

our implementation, which has shown good performance in simulations.

For the confidence intervals, we use the nonparametric bootstrap to obtain standard error es-

timates of each of the bounds and then apply the (Imbens and Manski, 2004) approach. In sim-

ulations, we found this approach to be slightly conservative and other competing methods, such

as Chernozhukov, Newey and Santos (2023), to undercover the true parameter slightly, at least in

simulations similar to our data example. Thus, we use the nonparametric bootstrap approach for

our confidence intervals.
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C Parametric Bayesian Approach to Incorporate Covariates

The nonparametric bounds above are sharp in the sense that they leverage all information about the

outcome, moderator, treatment, and question order. Researchers, however, often have additional

data in the form of covariates that may help reduce the uncertainty of their estimates. Here, we

consider a Bayesian parametric model of the principal strata approach to the pre-test, post-test, and

random placement designs, building on the work of Mealli and Pacini (2013) (see also Imbens and

Rubin, 1997; Hirano et al., 2000). Unlike the nonparametric bounds approach, a Bayesian model

allows us to incorporate prior information about the data-generating process in a smooth and flexible

manner.1

C.1 The Model

Our approach focuses on a data augmentation strategy that models the joint distribution of the

outcomes and the principal strata, the latter of which are not directly observable. We allow the

distribution of the potential outcomes and principal strata conditional on those strata to further

depend on covariates via a binomial and multinomial logistic model, respectively:

P(Yi = 1 | Ti = t, Zi = z, Si = s,Xi) = µis(t, z) = logit−1(αtz|s + X ′i β),

P(Si = s | Xi) = ρis =
exp(X ′i ψs)

∑j∈S exp(X ′i ψj)
,

where Xi denotes observed pre-treatment covariates that might be predictive of unit i’s outcome and

principal strata. Note that the strata probabilities do not depend on Ti and Zi due to randomization.

We gather the parameters as α = {αtz|s} and ψ = {ψs}. We can easily incorporate assumptions

like monotonicity and stable moderators by simply restricting the space of possible principal strata

S .

Our goal is to make inferences about the posterior distribution of these parameters and the
1Levis et al. (2023) proposes a way to incorporate covariates on nonparametric bounds when the quantity of interest

can be written as an average of covariate-specific quantities. Unfortunately, we cannot write the interaction in this way
because it is the difference between two different CATEs that condition on different subsets of the data. One could use
their approach on each of the individual CATEs and combine those bounds for the interaction, but the resulting bounds
would not be sharp.
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ultimate quantities of interest, τ(d) and δ. There are two ways to represent these quantities under

this parametric model, resulting in two different types of posterior distributions. The first is based

on population inference and derives expressions for τ(d) and δ purely in terms of the parameters

of the model. The second is based on in-sample inference and derives expressions for τ(d) and δ

in terms of potential outcomes in a particular sample.

For the population inference approach, we first note that due to consistency and randomization,

we have µis(t, z) = P(Yi(t, z) = 1 | Si = s, Xi). Thus, we can write the values of the quantities

of interest for a given unit as,

τi(m) = E [Y∗i (1)−Y∗i (0) | M∗i = m, Xi] = ∑
s∈S∗d

(µis(1, 1)− µis(0, 1))ρis,

and δi = τi(1)− τi(0), where we omit the implied dependence on (α, β, ψ) and remember that

S∗d is the set of strata levels such that M∗i = m, for m ∈ {0, 1}. Using the empirical distribution of

covariates, the average of these conditional mean differences and interactions will equal the overall

quantities of interest, i.e., τ(m) = ∑n
i=1 τi(m)/n and δ = ∑n

i=1 δi/n.

The in-sample versions of the quantities of interest are more straightforward, since they are

simply the conditional mean differences and interaction among the units in the sample,

τs(m) =
∑n

i=1 I(M∗i = m)
{

Y∗i (1)−Y∗i (0)
}

∑n
i=1 I(M∗i = m)

,

and δs = τs(1)− τs(0). Obviously, across repeated samples, we can relate these to the population

quantities as E[τs(m)] = τ(m) and E[δs] = δ.

We develop an efficient Markov Chain Monte Carlo (MCMC) algorithm to take draws from the

posterior and then calculate these quantities of interest. Our Gibbs sampler can also be simplified

and used for inference in the absence of pre-treatment covariates, which can be viewed as a Bayesian

alternative to uncertainty estimation for the partially identified parameters discussed in Section 5.

We provided details of these algorithms in Supplemental Materials D.

This Bayesian approach has the advantage of easily incorporating covariates, but it does require

us to select prior distribution for the model parameters, some of which are unidentified in the fre-

quentist sense. Thus, the identification of these parameters will depend on the prior. To investigate
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this, we take draws of the prior predictive distribution under different prior structures, which we

show in Figure SM.1. All the priors we considered are symmetric, but uniform priors on the model

parameters lead to somewhat informative priors on the ultimate quantity of interest. Thus, we rely

on more dispersed priors for the simulations and the application. We discuss the choice of prior

distribution more fully in Supplemental Materials D.

We conduct two simulation studies to demonstrate the gains in efficiency from the monotonic-

ity and stability assumptions and the incorporation of covariates in the Bayesian approach. The

first simulation varies the assumptions of the data-generating process and compares the posterior

variance of these distributions across combinations of our two assumptions. The second simulation

varies the predictive power of the covariates on the outcome and the strata in the data-generating

process and compares the variance of the posterior distributions from Gibbs run on each simu-

lated data set with and without incorporating covariates. We present these results in Supplemental

Materials D.1.

D MCMC Algorithm

In this section we describe our MCMC algorithm for the Bayesian model of Section C. Our goal is

to sample from the joint distribution of the parameters and the principal strata indicator,

P(α, β, ψ, S | Y , X, T , Z, M) ∝
n

∏
i=1

(
∑

s∈Si

[P(Yi | Ti, Zi, Si = s,Xi)P(Si = s | Xi)]
I(Si=s)

)
P(α, β, ψ),

where Si = S(Ti, Zi, Mi) are the set of principal strata to which unit i could possibly belong.

When the set of observed pre-treatment covariates (Xi) is empty, the parameter space reduces to

that of a standard finite mixture model, and sampling from the joint posterior is straightforward.

WithXi, Bayesian inference for the model is more complicated. Traditionally, Bayesian inference

for logistic regression models has been challenging due to a lack of a simple Gibbs sampling algo-

rithm. Recently, however, Polson, Scott and Windle (2013) introduced a simple data-augmentation

strategy based on the Pólya-Gamma (PG) distribution, obviating the need for approximate methods
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or precise tuning of a Metropolis-Hastings algorithm. We use this approach for both the binary

and multinomial logistic regression models for the outcome and principal strata, respectively. This

allows a simple Gibbs structure where the full conditional posterior distributions of (α, β) and ψ

are Normal conditional on specific draws from the PG distribution.

Conditional on the other parameters, then the full conditional posterior of the principal strata

follows a similar form to Hirano et al. (2000),

P(Si = s | Yi, Xi, Ti, Zi, Mi, α, β, ψ) =
µis(Ti, Zi)

Yi(1− µis(Ti, Zi))
1−Yi ρis

∑k∈Si
µik(Ti, Zi)Yi(1− µik(Ti, Zi))1−Yi ρik

,

where we suppress the dependence of µis and ρis on the model parameters. Repeatedly drawing

from these full conditional posterior distributions should provide a sample from the above joint

posterior and allow for posterior inference in the usual manner. In each iteration, r ∈ {1, . . . , R},

of the algorithm, we have draws ({
Ŝ(r)

i

}n

i=1
, ψ̂(r), α̂(r), β̂(r)

)
.

We can use these draws to generate draws of the population and in-sample versions of the quan-

tity of interest. Given that Ŝ(r)
i is the imputed principal strata imputed for unit i in the rth draw from

the posterior, we let

µ̂
(r)
i (t, z) = µ̂

i,Ŝ(r)
i
(t, z, α̂(r), β̂(r))

be the mean of the potential outcomes conditional on that imputed principal strata. Furthermore,

let ρ̂
(r)
is be the rth draw of the predicted probabilities of each principal strata for each unit. Then,

we can calculate the population quantity as

δ̂
(r)
p =

1
n

n

∑
i=1

 ∑
s∈S∗1

(µ̂
(r)
is (1, 1)− µ̂

(r)
is (0, 1))ρ̂(r)is

−
 ∑

s∈S∗0

(µ̂
(r)
is (1, 1)− µ̂

(r)
is (0, 1))ρ̂(r)is

 ,

For the in-sample quantity, we can then draw imputed values of the missing potential outcomes

themselves Ŷ∗,(r)i (1) ∼ Bin(µ̂(r)
i (1, 1)) and Ŷ∗,(r)i (0) ∼ Bin(µ̂(r)

i (0, 1)). We can combine this

with the imputed value of M∗i , which mechanically derives from Ŝr
i , to get the rth draw from the
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posterior of δs,

δ̂
(r)
s =

∑n
i=1 M̂∗,(r)i

{
Ŷ∗,(r)i (1)− Ŷ∗,(r)i (0)

}
∑n

i=1 M̂∗,(r)i

−
∑n

i=1

(
1− M̂∗,(r)i

) {
Ŷ∗,(r)i (1)− Ŷ∗,(r)i (0)

}
∑n

i=1

(
1− M̂∗,(r)i

) .

Broadly speaking, we would not expect very large differences between these two targets, except for

slightly less posterior variance for the in-sample version.

Figure SM.1: Prior predictive distribution of the parameter under three different prior distributions: (red)
the default priors that scales a Jeffreys prior by the number of principal strata; (blue) a uniform prior on all
parameters; and (green) a more extreme prior that has α = 1/16.
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As discussed in the main text, the priors need careful attention because they drive the identifi-

cation of the parameters that are unidentified by the likelihood. One additional complication comes

from how the ultimate quantity of interest is a function of the parameters so we cannot directly

place, for example, a uniform prior on δ. Figure SM.1 shows the prior predictive distribution for

interaction with three different priors when monotonicity and stable moderator under control are

assumed and there are no covariates. The uniform prior on all parameters results in a prior on δ

that has more density in the center of identified range than we might expect. This result is similar

to how sums of uniform random variables are not themselves uniform. We can counteract this issue
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Figure SM.2: Comparing Bayesian estimates for δ for default, extreme, and uniform priors

Randomization Randomization
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Randomization
+ Stability
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+ Stability
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Default (alpha = 0.5 / # of strata) Extreme Uniform Post−only Prepost

Notes: Figure shows posterior means and 95% credible intervals for δ under different sets of assumptions,
applied to either the post-only data (grey) or the combined pre-post data (black). Estimates are shown with
default, extreme, and uniform priors, (denoted by circles, triangles, and squares, respectively). We follow
the original authors in using age, gender, education, and closeness to one’s ethnic group as covariates. The
naı̈ve OLS estimates are included for comparison.

by reducing the Dirichlet and Beta hyperparameters below 1 to put more density at extreme values

of the parameters compared to the center. Dropping these parameters down to 1/16 (in green) leads

to more mass on strata means closer to 0 or 1 and strata probabilities closer to 0 and 1. In terms

of the interaction, this leads to more mass at the values -2, -1, 0, 1, and 2. Our default prior (red)

is one that scales the hyperparameters by the inverse of the number of strata to achieve something

closer to a uniform distribution.

Additionally, we re-ran the Gibbs empirical analysis of the Horowitz and Klaus (2020) study,

adjusting the priors to the extreme values or uniform values in the previous simulation. The results

are displayed in Figure SM.2, demonstrating the general consistency of the point estimates across

starting priors, although there is some fluctuations in the variance of the results.
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D.1 Simulation Evidence for the Bayesian Approach

Simulation Study I. In the first simulation study, we generate simulated data with n = 1000

constructed using a data generating process that matches the Bayesian posterior, pre-specifying co-

efficient values for the outcome and principal strata models, randomly drawing values of Z, T, and

three covariates X1, X2, and X3, and generating values of Y and M from the models. Tables SM.2

and SM.3 in the Supplemental Materials display the β coefficients for the outcome and ψ coefficients

for the for the true data generating process (DGP). The DGP assumes that monotonicity and stable

moderator under control both hold so that there are three feasible strata (S = {000, 100, 111}).

Thus, in this setting it would be most appropriate to incorporate both assumptions into the MCMC

algorithm for sampling from the posterior distribution. Since these assumptions narrow the non-

parametric bounds, we expect the assumptions to reduce variance of the posterior distribution of

δ.

To test this, we perform a Monte Carlo simulation with 1,000 iterations. For each iteration,

we calculate the posterior distribution of δ with the same data across four different versions of the

MCMC algorithm: enforcing just the monotonicity assumption, enforcing just the stable moderator

under control assumption, enforcing neither assumption, and enforcing both assumptions. Each run

of our MCMC algorithm consists of 4 chains with 2,000 iterations each, 200 burn-in (or warm-up)

iterations, and a thinning parameter of 2. Both in-sample and population δ values are calculated at

each iteration and the variance of the posterior is calculated from a sample of 1,000 draws from the

posterior. This is done for each of the 1,000 simulated datasets, and for each dataset we compute the

percent reduction in variance compared to the MCMC algorithm with no assumptions when using

the algorithm with the monotonicity assumption, the stable moderator under control assumption,

or both assumptions.

Figure SM.3 presents boxplots for the distribution of reductions in variance for each combina-

tion of assumptions. Both the monotonicity and stable moderator assumptions on their own reduce

the variance compared to no assumptions, while making both assumptions reduces the variance even

further. The monotonicity assumption showed a median posterior variance reduction of 33.0% for
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Figure SM.3: Variance reduction from different combinations of assumptions. Boxplots present distribution
of % variance reduction of δ from the MCMC algorithm with the labeled assumptions compared to same
algorithm with no assumptions, across 1,000 draws of simulated data. For each simulation iteration, 4 chains
were run for each combination of assumptions. MCMC parameters: 2,000 iterations, 200 burn-in, 2 thinning
parameter, simulated data n = 1, 000.

the in-sample δ and 39.9% for the population δ. The stable moderator under control assumption on

reduced the posterior variance by a median reduction of 38.9% (in-sample δ) and 41.9% (popula-

tion δ). The MCMC algorithm with both assumptions exhibited a posterior variance reduction of

64.2% (in-sample δ) and 65.2% (population δ).

Simulation Study II. In the second simulation study, we drew a series of simulated datasets

under different conditions where the covariates had a weak, medium, or strong correspondence

with the outcome and principal strata in the data generating processes. Thus, there were six total

conditions: Weak, Medium, and Strong influence in the outcome DGP; and Weak, Medium, and

Strong influence in the principal strata DGP. The values of the coefficients for these conditions are

β and ψ values of 0, 0.25, and 0.5, respectively. When varying the influence of covariates in the

outcome DGP, the influence of covariates on the strata was held constant, and the influence in the

outcome model was similarly held constant when varying influence in the strata DGP. Fixed values
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Figure SM.4: Variance reduction from incorporation of covariates. Boxplots present distribution of % vari-
ance reduction of δ from Gibbs with covariates compared to MCMC without covariates, across 1,000 draws
of simulated data. For each draw 4 MCMC chains were run for each combination of assumptions. MCMC
parameters: 2,000 iterations, 200 burn-in, 2 thinning parameter, simulated data n = 1, 000.

of the β’s and ψ’s are shown in the Supplemental Materials in Tables SM.4 and SM.5.

For each condition, we drew 1,000 simulated datasets and ran the MCMC algorithm twice: one

time incorporating covariates and one time omitting them. Each MCMC run consisted of the same

iterations, burn-in, and thinning parameters as in the previous simulation study. We again calculate

in-sample and population δ values for each iteration of the Gibbs and calculate the variance of the

posterior distribution and the % variance reduction comparing the Gibbs with covariates to that

without. Figure SM.4 presents boxplots for the distribution in variance reduction. When we vary

the influence of covariates on the outcome, we see a clear variance reduction in all conditions, and

we observe a larger reduction as the influence of covariates on the outcome in the DGP increases.

When testing the impact of incorporating covariates across different levels of influence in the DGP

on the strata, the pattern is less pronounced, with overall reduction increases in all conditions but

slightly lower reductions in the Medium than Weak condition. The Strong condition still has the

largest variance reduction overall, however, so in general the efficiency gains from incorporating
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covariates are increasing as the influence of covariates on strata in the data increases.

E Additional Simulation Details

Table SM.2: β Values for DGP in Bayesian Assumptions Simulation

Variable β
(Intercept) -2.00

X1 1.00
X2 0.15

X3 (Medium) 0.24
X3 (Large) 0.28

T 0.83
Z -0.01

T:Z 0.11
S111 0.41
S100 0.62

T:S111 0.01
T:S100 0.23
Z:S111 0.20
Z:S100 -0.02

T:Z:S111 -0.90
T:Z:S100 0.09

Table SM.3: ψ Values for DGP in Bayesian Assumptions Simulation

S111 s100 s000
(Intercept) -2.06 -1.00 0.00

X1 2.00 1.50 0.00
X2 0.50 0.17 0.00

X3 (Medium) 1.35 -0.28 0.00
X3 (Large) 1.75 -1.01 0.00

E.1 Comparing the sharp bounds and Bayesian approach without covariates

Figure SM.5 displays the non-parametric bounds (with 95% confidence intervals) and Bayesian

estimates (posterior means with 95% credible intervals) for δ under different sets of assumptions
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Table SM.4: Fixed β Values in Covariate Simulation

Variable β
(Intercept) -1.00

X1 1.00
X2 0.50

X3 (Medium) 0.50
X3 (Large) 0.28

T 0.83
Z -0.01

T:Z 0.11
S111 0.41
S100 0.62

T:S111 2.00
T:S100 -0.13
Z:S111 0.50
Z:S100 0.10

T:Z:S111 0.05
T:Z:S100 0.01

Table SM.5: Fixed ψ values in Bayesian Covariate Simulation

S111 S100 S000
(Intercept) -2.06 -1.00 0.00

X1 2.00 1.50 0.00
X2 0.50 0.17 0.00

X3 (Medium) 1.35 -0.28 0.00
X3 (Large) 1.75 -1.01 0.00

applied to the post-only data (in grey) and to the combined pre-post data (in black). We also include

the naı̈ve OLS estimate with 95% confidence interval for comparison in the final panel.

E.2 Incorporating covariates into the Bayesian approach

Thus far, our Bayesian estimates have omitted covariates to aid comparison with the nonparametric

bounds. However, as discussed above, a key attraction of the Bayesian approach is the ease with

which we can incorporate additional information. Figure SM.6 presents posterior means with 95%

credible intervals, both with and without covariates, under different assumptions. We follow the

original authors in using age, gender, education, and closeness to one’s ethnic group as covariates.
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Figure SM.5: Comparing non-parametric bounds and Bayesian estimates for δ under different assumptions
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Notes: The figure shows nonparametric bounds and Bayesian estimates of the quantity of interest under
different sets of assumptions applied to either the post-only data (grey) or the combined pre-post data (black).
The thick bars denote the width of the bounds, and thinner lines denote the 95% confidence intervals around
the bounds. Across the first four panels, the thin lines with dots denote the Bayesian posterior mean and
95% credible interval. This estimate included no covariates to facilitate comparison with the nonparametric
bounds. For the final panel (“OLS”), the thin lines with dots denote the OLS estimate and 95% confidence
interval.

Including covariates significantly tightens the credible intervals, especially when fewer assumptions

are imposed. For example, when only randomization is assumed, the width of the 95% credible

interval shrinks by more than 40% when including covariates. While including covariates does not

alter our substantive conclusions in this case, it does show that incorporating additional information

can lead to large gains in precision. Since researchers often include a wide range of control variables
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Figure SM.6: Comparing Bayesian estimates for δ with and without covariates
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Notes: Figure shows posterior means and 95% credible intervals for δ under different sets of assumptions
applied to either the post-only data (grey) or the combined pre-post data (black). Estimates are shown with
and without the inclusion of covariates (denoted by triangles and circles, respectively), and the numbers
indicate the reduction in the width of the credible intervals due to the inclusion of covariates for the post-
only data (in grey) and the combined pre-post data (in black). We follow the original authors in using age,
gender, education, and closeness to one’s ethnic group as covariates. The naı̈ve OLS estimates are included
for comparison.

in the design of a survey experiment, flexibly leveraging this information is a key advantage of the

Bayesian approach.
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